Abstract

We study the defect solutions of the nonreciprocal Cahn-Hilliard model. We find two kinds of defects, spirals with unit magnitude topological charge, and topologically neutral targets. These defects generate radially outward traveling waves and thus break the parity and time-reversal symmetry. For a given strength of nonreciprocity, spirals and targets with unique asymptotic wave number and amplitude are selected. We use large-scale simulations to show that at low nonreciprocity α, disordered states evolve into quasistationary spiral networks. With increasing α, we observe networks composed primarily of targets. Beyond a critical threshold α_{c}, a disorder-order transition from defect networks to traveling waves emerges. The transition is marked by a sharp rise in the global polar order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.