Abstract

Adsorbed atomic H (H*ads) facilitates indirect pathways playing a major role in the electrochemical removal of various priority pollutants. It is crucial to identify the atomic sites responsible for the provision of H*ads. Herein, through a systematic study of the distribution of H*ads on Pd nanocatalysts with different sizes and, more importantly, deliberately controlled relative abundance of surface defects, we uncovered the central role of defects in the provision of H*ads. Specifically, the H*ads generated on Pd in an electrochemical process increased markedly upon introducing defect sites by changing the morphology to ultrathin polycrystalline Pd nanowires (NWs), while dramatically reducing upon decreasing the number of surface defects through an annealing treatment. Benefiting from a proportion of H*ads up to 40% of the total H* species, the Pd NWs showed an electrochemical active surface area normalized rate constant of 13.8 ± 0.8 h-1 m-2, which is 8-9 times higher than its Pd/C counterparts. The pivotal role of defect sites for the generation of H*ads was further verified by blocking such sites with Rh and Pt atoms, while theoretical calculation also confirms that the adsorption energy of H*ads on these sites is much higher than that on the Pd{111} facet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.