Abstract

Nanomaterials with intrinsic enzyme-like activities, namely "nanozymes," are showing increasing potential as a new type of broad-spectrum antibiotics. However, their feasibility is still far from satisfactory, due to their low catalytic activity, poor bacterial capturing capacity, and complicated material design. Herein, a facile synthesis of a defect-rich adhesive molybdenum disulfide (MoS2 )/rGO vertical heterostructure (VHS) through a one-step microwave-assisted hydrothermal method is reported. This simple, convenient but effective method for rapid material synthesis enables extremely uniform and well-dispersed MoS2 /rGO VHS with abundant S and Mo vacancies and rough surface, for a performance approaching the requirements of practical application. It is demonstrated experimentally and theoretically that the as-prepared MoS2 /rGO VHS possesses defect and irradiation dual-enhanced triple enzyme-like activities (oxidase, peroxidase, and catalase) for promoting free-radical generation, owing to much more active edge sites exposure. Meanwhile, the VHS-achieved rough surface exhibits excellent capacity for bacterial capture, with elevated reactive oxygen species (ROS) destruction through local topological interactions. As a result, optimized efficacy against drug-resistant Gram-negative and Gram-positive bacteria can be explored by such defect-rich adhesive nanozymes, demonstrating a simple but powerful way to engineered nanozymes for alternative antibiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.