Abstract

The defect recovery in proton irradiated Ti-modified D9 steel has been studied by positron annihilation isochronal and isothermal annealing measurements. D9 samples have been irradiated with 3 MeV protons followed by isochronal annealing at various temperatures in the range of 323 to 1273 K. The dramatic decrease in positron annihilation parameters, viz. positron lifetime and Doppler S-parameter, around 500 K indicates the recovery of vacancy-defects. A clear difference in the recovery beyond 700 K is observed between solution annealed and cold worked state of D9 steel due to the precipitation of TiC in the latter. Isothermal annealing studies have been carried out at the temperature wherein vacancies distinctly migrate. Assuming a singly activated process for defect annealing, the effective activation energy for vacancy migration is estimated to be 1.13 ± 0.08 eV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call