Abstract
Extrinsic diffusion of zinc (Zn) in gallium antimonide (GaSb) under Ga-rich conditions was analyzed on the basis of the kick-out and the dissociative diffusion mechanism. It is concluded that the changeover of interstitial Zn to substitutional gallium (Ga) sites is mainly mediated by Ga interstitials ( I Ga ). Fitting of the Zn profiles provides the relative contributions of I Ga to Ga diffusion. This contribution is lower than the directly measured Ga diffusion coefficient indicating that Ga diffusion in GaSb is rather mediated by Ga vacancies than by Ga interstitials even under Ga-rich conditions. This finding supports transformation reactions between native point defects that are confirmed by first-principles total-energy calculations. In addition Ga and Sb diffusion experiments under H 2 2 atmosphere were performed to reconcile the controversial data on self-diffusion in GaSb published by Weiler et al. and Bracht et al.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.