Abstract

Sustainable light energy from ambient environment has attracted particular attention to meet the ever-growing need of small-scale electronics. The modulation of intercorrelated thermal and electronic transport is one of the crucial aspects for reliable photothermoelectric electronics. Herein, a defect-promoted photothermoelectric effect is demonstrated in densely aligned ZnO nanorod array with rich lattice defects. The defect-rich ZnO device delivers high electrical conductivity and large Seebeck coefficient to enable significant improvement of photothermoelectric energy conversion and self-powered photodetection. The position sensitivity reaches approximately 0.19 mV mm−1, and the temperature gradient induced electric field makes up for the suppression in the photothermoelectric process. The synergism between intrinsic defects and extra temperature field plays an important role in promoting the photothermoelectric properties of dense ZnO nanorod array. This study is interesting for interpreting the thermo-phototronic phenomena as well as demonstrating the possibility of defect engineering and phonon engineering to enable highly efficient light energy scavenging and self-powered photodetection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.