Abstract

GeSe has recently emerged as a photovoltaic absorber material due to its attractive optical and electrical properties as well as earth abundancy and low toxicity. However, the efficiency of GeSe thin-film solar cells (TFSCs) is still low compared to the Shockley–Queisser limit. Point defects are believed to play important roles in the electrical and optical properties of GeSe thin films. Here, we perform first-principles calculations to study the defect characteristics of GeSe. Our results demonstrate that no matter under the Ge-rich or Se-rich condition, the Fermi level is always located near the valence band edge, leading to the p-type conductivity of undoped samples. Under Se-rich condition, the Ge vacancy (VGe) has the lowest formation energy, with a (0/2–) charge-state transition level at 0.22 eV above the valence band edge. The high density (above 1017 cm−3) and shallow level of VGe imply that it is the p-type origin of GeSe. Under Se-rich growth condition, Sei has a low formation energy in the neutral state, but it does not introduce any defect level in the band gap, suggesting that it neither contributes to electrical conductivity nor induces non-radiative recombination. In addition, Gei introduces a deep charge-state transition level, making it a possible recombination center. Therefore, we propose that the Se-rich condition should be adopted to fabricate high-efficiency GeSe solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call