Abstract
Development of low-bandgap (∼1.2 eV) Pb–Sn binary perovskites is exciting and has recently gained immense attention because of their high photovoltages, lowered Pb toxicity, and pivotal role in realizing perovskite tandem solar cells. Defect passivation in this class of perovskite alloys has immense potential to further reduce the photovoltage deficit but is relatively unexplored. Here, we investigate and report the passivation of defect sites in low-bandgap CH3NH3Pb0.5Sn0.5I3 perovskite through the incorporation of fluoroalkyl-substituted fullerene (DF-C60) via a graded heterojunction (GHJ) structure. Graded distribution of DF-C60 successfully reduced the number of trap sites, and the resultant films had characteristically lower Urbach energy, dominant bimolecular recombination, and higher surface/bulk recombination resistance. The improved optoelectronic quality of films with GHJ structure was reflected in improved performance for corresponding photovoltaic devices, with the best PCE up to 15.61% and a ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.