Abstract

The purpose of this article is to compare concepts of defect nucleation based on bifurcation of equilibrium solution and on damage modelling. The nucleation criterion is defined as a bifurcation of the equilibrium solutions of the perfect body and of the imperfect one when the size of the defect vanishes. The defect is considered as a small volume which evolves as a damaged zone. To study the influence of geometry of the defect on the critical loading governing its initiation, we consider the particular cases of a linear elastic composite sphere and of a linear elastic composite cylinder, for which the equilibrium solutions are known when the radial distribution of elastic bulk modulus is given simultaneously with a uniform shear modulus. The initial defect is a small sphere or a small cylinder, respectively, it can be a cavity or a kernel made with an elastic material with lower mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.