Abstract

Tin halide perovskites suffer from high defect densities compared with their lead counterparts. To decrease defect densities, SnF2 is commonly used as an additive in tin halide perovskites. Herein, we investigate how SnF2 compares to other SnX2 additives (X = F, Cl, Br) in terms of electronic and ionic defect properties in FASnI3. We find that FASnI3 films with SnF2 show the lowest Urbach energies (EU) of 19 meV and a decreased p-type character, as probed with ultraviolet photoemission spectroscopy. The activation energy of ion migration, as probed with thermal admittance spectroscopy, for FASnI3 with SnF2 is 1.33 eV, which is higher than with SnCl2 and SnBr2, which are 1.22 and 0.79 eV, respectively, resulting in less ion migration. Because of improved defect passivation, the champion power conversion efficiency of FASnI3 with SnF2 is 7.47% and only 1.84% and 1.20% with SnCl2 and SnBr2, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call