Abstract
The one-dimensional dielectric photonic crystals (PCs) with complex defect layers, consisting of superconducting (SC) and dielectric sublayers are theoretically studied. Transfer matrix method (TMM) has been used throughout this study. The influence of a substitutional defect on the transmittivity spectra is analyzed for normal incidence of light on the structure. The two-fluid model and wavelength-dependent dispersion formula were adopted to describe the optical response of the low temperature superconducting defect sublayer. The pronounced difference in the transmittivity spectra of the photonic crystals with right-handed (RH) and left-handed (LH) positions of the superconducting defect sublayer with respect to the dielectric defect sublayer is demonstrated. We have showed that in contrast to the usual defect modes, the position of the defect modes is nearly invariant with the position of the defect layer from one end to the other end of the PC. It is observed that, for the case of RH SC defect sublayer, the position of the defect mode and the transmittivity at the defect mode frequency strongly depend on the thickness of the superconducting sublayer as well as on the temperature. It is also shown that in contrast to the case of the PCs with RH SC defect, the defect modes of the PCs with LH SC defect sublayer are nearly invariant upon the change of the thickness of the superconducting sublayer and the temperature. This study may be valuable in designing optical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.