Abstract
Tin (II) monosulfide (SnS) has attracted considerable attention in emerging photonics and optoelectronics because of high carrier mobility, large absorption coefficient, anisotropic linear and nonlinear optical properties, and long-time stability. In this Letter, we report third-order nonlinear absorption and refraction of SnS quantum dots (QDs). Under excitation with 800-nm femtosecond pulses, QDs exhibit saturable absorption (saturation intensity ∼ 47.69 GW/cm2) and positive refractive nonlinearity (nonlinear refraction coefficient ∼ 1.24 × 10-15 cm2/W). Nonetheless, we investigate charge carrier dynamics using femtosecond transient absorption spectroscopy and propose the presence of midgap defect states which not only dictate carrier dynamics but also give rise to nonlinear optical properties in SnS QDs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.