Abstract

Tin (II) monosulfide (SnS) has attracted considerable attention in emerging photonics and optoelectronics because of high carrier mobility, large absorption coefficient, anisotropic linear and nonlinear optical properties, and long-time stability. In this Letter, we report third-order nonlinear absorption and refraction of SnS quantum dots (QDs). Under excitation with 800-nm femtosecond pulses, QDs exhibit saturable absorption (saturation intensity ∼ 47.69 GW/cm2) and positive refractive nonlinearity (nonlinear refraction coefficient ∼ 1.24 × 10-15 cm2/W). Nonetheless, we investigate charge carrier dynamics using femtosecond transient absorption spectroscopy and propose the presence of midgap defect states which not only dictate carrier dynamics but also give rise to nonlinear optical properties in SnS QDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call