Abstract

In this work we measured the crystal defect levels and tested the performance of CdZnTe detectors by diverse methodologies, viz., Current Deep Level Transient Spectroscopy (I-DLTS), Transient Current Technique (TCT), Current and Capacitance versus Voltage measurements (I-V and C-V), and gamma-ray spectroscopy. Two important characteristics of I-DLTS technique for advancing this research are (1) it is applicable for high-resistivity materials (&gt;10<sup>6</sup> &Omega;-cm), and, (2) the minimum temperature for measurements can be as low as 10 K. Such low-temperature capability is excellent for obtaining measurements at shallow levels. We acquired CdZnTe crystals grown by different techniques from two different vendors and characterized them for point defects and their response to photons. I-DLTS studies encompassed measuring the parameters of the defects, such as the energy levels in the band gap, the carrier capture cross-sections and their densities. The current induced by the laser-generated carriers and the charge collected (or number of electrons collected) were obtained using TCT that also provides the transport properties, such as the carrier life time and mobility of the detectors under study. The detector's electrical characteristics were explored, and its performance tested using I-V, C-V and gamma-ray spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call