Abstract

Flip chip technology has been extensively used in high density electronic packaging over the past decades. With the decrease of solder bumps in dimension and pitch, defect inspection of solder bumps becomes more and more challenging. In this paper, an intelligent diagnosis system using the scanning acoustic microscopy (SAM) is investigated, and the fuzzy support vector machine (F-SVM) algorithm is developed for solder bump recognition. In the F-SVM algorithm, we apply a fuzzy membership to input feature data so that the different input features can make different contributions to the learning procedure of the network. It solves the problem of feature data aliasing in the traditional SVM. The SAM image of flip chip is captured by using an ultrasonic transducer of 230MHz. Then the segmentation of solder bumps is based on the gradient matrix of the original image, and the statistical features corresponding to every solder bump are extracted and adopted to the F-SVM network for solder bump classification and recognition. The experiment results show a high accuracy of solder defect recognition, therefore, the diagnosis system using the F-SVM algorithm is effective and feasible for solder bump defect inspection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.