Abstract

Preparing an anatase TiO2(101) surface with a high density of oxygen vacancies and associated reduced Ti species in the near-surface region results in drastic changes in the water adsorption chemistry compared to adsorption on a highly stoichiometric surface. Using synchrotron radiation excited photoelectron spectroscopy, we observe a change in the water growth mode, from layer-by-layer growth on the highly stoichiometric surface to bilayer growth on the reduced surface. Furthermore, we have been able to observe Ti3+ enrichment at the surface upon water adsorption. The Ti3+ enrichment occurs concomitant with effective water dissociation into hydroxyls with a very high thermal stability. The water bilayer on the reduced surface is thermally more stable than that on the stoichiometric surface, and it is more efficient in promoting further water dissociation upon heating. The results thus show how the presence of subsurface defects can alter the wetting mechanism of an oxide surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.