Abstract

The transition from disorder to order and structural transformation are distinctive metal-organic framework (MOF) features. How to adapt or control both behaviors in MOF has rarely been studied. In this case, we demonstrate that our successful synthesis of [Al(OH)(PDA)]n (AlPDA-53-DEF, AlPDA-53-H, and AlPDA-68) with H2PDA=4,4'-[1,4-phenylenebis(ethyne-2,1-diyl)]-di benzoic acid has shown the intricate world of Aluminum Metal-Organic Frameworks (Al-MOFs). It offers profound insights into defect structures to order and transformations. AlPDA-53-DEF, in particular, revealed a fascinating interplay of various pore sizes within both micro and mesoporous regions, unveiling a unique lattice rearrangement phenomenon upon solvent desorption. Defects and disorders emerged as crucial impacts of transforming AlPDA-53-DEF, with its initially imperfect crystallinity, into the highly crystalline, hierarchically porous AlPDA-53-H.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call