Abstract

The effect of ZnO defects on photoexcited charge carrier recombination and forward induced charge transfer was studied in organic-inorganic bilayer organic heterojunction solar cells. Decreased bimolecular recombination via passivation of ZnO nanopariticle defects resulted in longer carrier lifetime as determined by transient photovoltage (TPV) measurements. It was also found by time-resolved photoluminescence (TRPL) measurements that defect passivation decreased the fluorescence lifetime which indicated higher exciton dissociation efficiency. Through passivation of the ZnO nanoparticles defects, the two loss mechanisms were reduced and the power conversion efficiency (PCE) is significantly enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.