Abstract

Acoustic emission (AE) was used to monitor the progress of the fatigue damage process in the cement mantles of two cemented femur stem constructs that contained naturally occurring defects. After the fatigue tests, morphological features of the defects were investigated using an environmental scanning electron microscope. It showed that the regions with no visible defects were mainly microcrack free, whereas the defect regions were the main sources generating microcracks. Two types of microcracks were identified: type I and type II. Signal energies associated with type I microcracks were about an order of magnitude higher than that of type II. The microstructural investigations of the defects and the areas in the vicinity of the defects suggested their categorization into stable and unstable. The accumulative energy-time relationships revealed that stable and unstable microcrack curves had convex [formula: see text], and concave [formula: see text] shapes, respectively. The progress of fatigue microcrack formation occurred over three distinct phases: initiation, transition, and stableness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.