Abstract

Generally, the emission intensity of phosphors can be enhanced by introducing a proper number of defects. To enhance the emission intensity of Ca4.85(BO3)3F(C4.85BF):0.15Bi3+, more Frenkel defects were introduced by Na+, Sr2+, and Ba2+. It is found that the number of Frenkel defects is related to volume and covalence of the crystal, in which the covalence has a greater effect than the volume. Furthermore, the larger the volume of the crystal is, the stronger the covalence of the crystal is, the more Frenkel defects will be produced. The volume of Ca4.85- xSr x(BO3)3F(C4.85- xSr xBF):0.15Bi3+ is larger than that of Ca4.85- xNa x(BO3)3F(C4.85- xNa xBF):0.15Bi3+; however, the covalence of Na+ is similar to that of Sr2+, which leads to the same trap depth ( Eα) and defect density (μg) in the quenching concentration. The results also confirmed that the number of Frenkel defects is mainly influenced by the covalence of crystal. Furthermore, crystal distortion also affects the number of Frenkel defects. C4.85- xSr xBF:0.15Bi3+ and C4.85- xNa xBF:0.15Bi3+ have the same distortion at quenching concentration, which results in the same emission intensity in the quenching concentration. Ca4.85- xBa x(BO3)3F (C4.85- xBa xBF):0.15Bi3+ has a larger volume and stronger covalence; meanwhile, it has deeper trap depth ( Eα) and larger defect density (μg) at the quenching concentration, comparing with C4.85- xSr xBF:0.15Bi3+ and C4.85- xNa xBF:0.15Bi3+. However, the distortion of C4.85- xBa xBF:0.15Bi3+ is in agreement with C4.85- xNa xBF:0.15Bi3+ and C4.85- xSr xBF:0.15Bi3+, which leads to the emission intensity of C4.85- xBa xBF:0.15Bi3+ basically the same as that of C4.85- xNa xBF:0.15Bi3+ and C4.85- xSr xBF:0.15Bi3+ in quenching concentration. And the different rates of distortion result in the different quenching concentrations of C4.85- xNa xBF:0.15Bi3+, C4.85- xSr xBF:0.15Bi3+, and C4.85- xBa xBF:0.15Bi3+. Moreover, for Ca4.85- xMg x(BO3)3F(C4.85- xMg xBF):0.15Bi3+ and Ca4.85(BO3)3F1- yCl y(C4.85BF1- yCl y):0.15Bi3+, there are no Frenkel defects due to weaker covalence and smaller volume of the crystal in C4.85- xMg xBF:0.15Bi3+. However, Frenkel defects can be observed in C4.85BF1- yCl y:0.15Bi3+ due to stronger covalence and larger volume of the crystal, furthermore, and the emission spectra and thermoluminescence spectra of C4.85BF1- yCl y:0.15Bi3+ are similar to those of 0.15Bi3+ doped C4.85- xNa xBF:0.15Bi3+, C4.85- xSr xBF:0.15Bi3+, and C4.85- xBa xBF:0.15Bi3+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.