Abstract

Defects in hydroxyapatite (HA) have attracted increasing research interest due to their significant functions to increase the bioactivity and antibacterial ability of hard-tissue implants. However, little is known about the natural property and functional mechanism of the defects in HA. Herein, we reported on the defect property concerned with the coordination state and charge distribution in Al doped HA, as well as the consequent interface and protein capture ability for improved antibacterial activity. Systemic investigations suggested that Al replacing Ca in HA induced coordination defect with decreased coordination number and bond distance, caused charge transfer and redistribution of surrounding O atom and resulted in an increase in negative charge of coordinated O atoms. These O atoms coordinated with Al further served as docking sites for lysozyme molecules via electrostatic and H-bonding interaction. The capacity of lysozyme adsorption for Al-HA increased approximately 10-fold more than that of HA, which significantly increased the antibacterial activity through lysozyme-catalyzed splitting of cell wall of bacteria. Moreover, in vitro studies indicated that Al-HA materials showed good cytocompatibility. These findings not only provided new insights into the important effect of defects on the performances of HA biomaterials by modulation of the coordination state, charge distribution, and chemical activity, but also proposed a promising method for efficient antibacterial activity of HA biomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call