Abstract

Platinum diselenide (PtSe$_{2}$) is a recently-discovered extrinsic magnet, with its magnetism attributed to the presence of Pt-vacancies. The host material to these defects itself displays interesting structural and electronic properties, some of which stem from an unusually strong interaction between its layers. To date, it is not clear how the unique intrinsic properties of PtSe$_2$ will affect its induced magnetism. In this theoretical work, we show that the defect-induced magnetism in PtSe$_{2}$ thin films is highly sensitive to: (i) the layer-thickness (ii) defect density, and (iii) substrate choice. These different factors dramatically modify all magnetic properties, including the magnitude of local moments, strength of the coupling, and even nature of the coupling between the moments. We further show that the strong inter-layer interactions are key to understanding these effects. A better understanding of the various influences on magnetism, can enable controllable tuning of the magnetic properties in Pt-based dichalcogenides, which can be used to design novel devices for magnetoelectric and magneto-optic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.