Abstract
Defect identification and mitigation is an important avenue of research to improve the overall quality of objects created using additive manufacturing (AM) technologies. Identifying and mitigating defects takes on additional importance in large-scale, industrial AM. In large-scale AM, defects that result in failed prints are extremely costly in terms of time spent and material used. To address these issues, researchers at Oak Ridge National Laboratory’s Manufacturing Demonstration Facility investigated the use of a laser profilometer and thermal camera to collect data concerning an object as it was constructed. These data provided feedback for an in situ control system to adjust object construction. Adjustments were made in the form of automated height control. This paper presents results for both a polymer- and metal-based system. Object construction for both systems was improved significantly, and the resulting objects were more geometrically identical to the ideal 3D representation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.