Abstract

We investigate topography-driven generation of defects in liquid crystal films coating frozen surfaces of spatially varying Gaussian curvature whose topology does not automatically require defects in the ground state. We study in particular disclination-unbinding transitions with increasing aspect ratio for a surface shaped as a Gaussian bump with a hexatic phase draped over it. The instability of a smooth ground state texture to the generation of a single defect is also discussed. Free boundary conditions for a single bump are considered as well as periodic arrays of bumps. Finally, we argue that defects on a bump encircled by an aligning wall undergo sharp deconfinement transitions as the aspect ratio of the surface is lowered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.