Abstract

We study extreme ultraviolet (EUV) radiation induced defects in single-layer graphene. Two mechanisms for inducing defects in graphene were separately investigated: photon induced chemical reactions between graphene and background residual gases, and breaking sp2 bonds, due to photon and/or photoelectrons induced bond cleaving. Raman spectroscopy shows that D peak intensities grow after EUV irradiation with increasing water partial pressure in the exposure chamber. Temperature-programmed desorption (TPD) experiments prove that EUV radiation results in water dissociation on the graphene surface. The oxidation of graphene, caused by water dissociation, is triggered by photon and/or photoelectron induced dissociation of water. Our studies show that the EUV photons break the sp2 bonds, forming sp3 bonds, leading to defects in graphene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call