Abstract

The electronic properties of carbon nanotubes depend on several factors such as diameter, chirality, and defects. Defects such as vacancies can drastically modify the electronic properties of these nanostructures. The introduction of defects by irradiation processes can not only lead to interesting defective nanomaterials but also tailor its intrinsic properties for specific electronic applications. The ability to accurately identify and quantify defects in carbon nanotubes is of major importance for their incorporation into electronic devices. We report on a newly developed quantitative method which combines a known fluence or pulse of ions from a focused beam source with Raman spectroscopy for characterization of defects enabling the detection of systematic variations in defect concentration emerging at 0.5% from different single-wall carbon nanotube (SWCNT) types, semiconducting and metallic. It was also demonstrated that this result is independent from the selected ion species and its energy for thin ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.