Abstract

We report a current transport mechanism observed during electrochemical anodization of ion irradiated p-type silicon, in which a hole diffusion current is highly funneled along the gradient of modified doping profile towards the maximum ion induced defect density, dominating the total current flowing and hence the anodization behaviour. This study is characterized within the context of electrochemical anodization but relevant to other fields where any residual defect density may result in similar effects, which may adversely affect performance, such as in wafer gettering or satellite-based microelectronics. Increased photoluminescence intensity from localized buried regions of porous silicon is also shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.