Abstract

Defect engineering is applied to induce controllable changes in structures and dielectric behaviors in oxides. SrTiO3 ceramics modified by complex ions (Nb, Zn)x+ (x = 2, 3, 4 and 5) with variable valence states are prepared by standard solid state method. Phase structures, microstructures, defect structures and dielectric properties of the (Nb, Zn) co-doped SrTiO3 ceramics have been systematically investigated. In acceptor co-doping, M2 ceramics (x = 2) exhibits extremely low dielectric loss (≤0.001). M3 ceramics (x = 3) shows low conductivity and excellent thermal stability. In equivalent co-doping, M4 ceramics (x = 4) possesses giant permittivity and low dielectric loss. In donor co-doping, M5 ceramics (x = 5) presents improved permittivity while deteriorated dielectric loss. Further investigations reveal that oxygen vacancy is beneficial to the localization of charge carriers and then the low tangent loss, while excess electrons not only contribute to the improved permittivity but also result in high dielectric loss. Appropriate concentrations of oxygen vacancy and electron are significantly important for the formation of multiple defect dipoles or defect clusters, and therefore the greatly modified dielectric properties. The findings may facilitate the ability to engineer the advanced electronic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call