Abstract

Understanding the roles of point defects in optical transitions is a key to the desirable engineering of photochemical materials. In this study, the origins of the significantly varying optical and photochemical properties of Nb-doped anatase TiO2 were systematically investigated, using density functional theory (DFT) calculations and experimental verifications. We found from DFT calculations that the desirable band gap reduction of anatase TiO2 by ∼0.1eV reported in many of experimental reports and the resultant improvements of photocatalytic and photovoltaic efficiencies of Nb5+-doped anatase TiO2 are due to the formation of complex (NbTi-VTi)3− as the compensator of NbTi+. Our experiments demonstrated that the O2-rich annealing, which is expected to increase the concentration of desirable (NbTi-VTi)3− complex, narrows band gap of TiO2 and strongly enhances the photocatalytic activity of Nb-doped TiO2 particle. On the contrary, pure TiO2 showed rather worse photocatalytic performances when annealed in O2-rich atmosphere, which is due to the formation of deep level by O-interstitial defect (Oi). Theoretically obtained charge effective masses could further explain the different photocatalytic activities of undoped and Nb-doped TiO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.