Abstract

Two-dimensional conductive metal-organic frameworks (2D conductive MOFs) with π-d conjugations exhibit high electrical conductivity and diverse coordination structures, making them constitute a desirable platform for new electronic devices. Defects are inevitable in the self-assembly process of 2D conductive MOFs. Arguably, defect engineering that deliberately manipulates defects demonstrates great potential to enhance the electrocatalytic activity of this family of novel materials. Herein, a facile and universal defect engineering strategy is proposed and demonstrated for metal vacancy regulation of metal benzenehexathiolato (BHT) coordination polymer films. Controllable metal vacancies can be produced by simply tuning the proton concentration during the confined self-assembly process at the liquid-liquid interface. This facile but universal defect design strategy has been proven to be effective in a class of materials including Cu-BHT, Ni-BHT, and Ag-BHT for physicochemical regulation. To further demonstrate the feasibility and practicality in electrochemical applications, the elaborately fabricated Cu-BHT films with abundant Cu vacancies deliver competitive performance in electrocatalytic sensing of H2O2. Mechanistic analysis revealed that the Cu vacancies act as effective active sites for adsorption and reduction of H2O2, and the tuned electronic structure boosts the electrocatalytic reaction. The developed advanced sensing platform confirms the excellent commercial potential of Cu-BHT sensors for H2O2. The findings provide insights into the molecular structure design of 2D conducting MOFs by defect engineering and demonstrate the commercial potential of Cu-BHT electrochemical sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call