Abstract
Van der Waals solids with tunable band gaps and interfacial properties have been regarded as a class of promising active materials for electrocatalytic hydrogen evolution reaction (HER). However, due to the anisotropic features, their basal planes are usually electrochemically inert, only a few unsaturated edge atoms could serve as active centers to actuate H2 generation. Hence, material utilization and productivity efficiency are insufficient for practical applications. Recently, diverse defects have been confirmed to enable tailoring atomic configurations and electronic properties of van der Waals solids, thus triggering their superior catalytic activity of in-plane atoms while introducing high amount of new active sites. In this minireview, we summarize the state-of-the-art progress of defect engineering in van der Waals solids for HER, focusing in particular on their advantages in material modification and corresponding catalytic mechanisms. We also propose the challenges and perspectives of these catalytic materials in terms of both experimental synthesis and fundamental understanding of the defect structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.