Abstract

With the rapid development of the nuclear industry, how to deal with radioactive iodine waste in a timely and effective manner has become an important issue to be solved urgently. Herein, the defect-engineering strategy has been applied to develop a metal-organic framework (MOF)-based solid adsorbent by using the classical UiO-type Hf-UiO-66 as an example. After simple acid treatment, the produced defect-containing Hf-UiO-66 (DHUN) not only retains its topological structure, high crystallization, and regular shape but also shows a great increase in the Brunauer-Emmett-Teller value and pore size in comparison with the original Hf-UiO (HUN). These formed defects within DHUN have been demonstrated to be important for the great enhancement of the iodine capture and following application in computed tomography imaging in vitro. This present work gives a new insight into the control and formation of defect sites, and this simple and efficient defect-engineering strategy also shows great promise for the development of novel solid adsorbents and other functional MOF materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.