Abstract
AbstractThe decay of lithium–sulfur (Li–S) batteries is mainly due to the shuttle effect caused by intermediate polysulfides (LiPSs). Herein, a multiple confined cathode architecture is prepared by filling graphitized Pinus sylvestris with carbon nanotubes and defective LaNiO3−x (LNO‐V) nanoparticles. The composite electrode with high areal sulfur loading of 11.6 mg cm−2 shows a high areal specific capacity of 8.5 mAh cm−2 at 1 mA cm−2 (0.05 C). Both experimental results and theoretical calculations reveal that this unique structure not only provides physical restriction on LiPSs within microchannels but also offers strong chemical immobilization and catalytic conversion of LiPSs attributed to the spin density around oxygen vacancies of LaNiO3−x. These oxygen vacancies elongate the SS and LiS bonds and make them easy to break. Furthermore, the lengthwise channels derived from cytoderm restrict the transverse diffusion of polysulfides, leading to a uniform areal current and thus homogeneous lithium infiltration. This suppresses the corrosion of the lithium anode due to polysulfides confinement. The discovery of the multiple confined structure that provides chemical adsorption, fast diffusion, and catalytic conversion for polysulfides can broaden the application of biomass materials and offer a new strategy to achieve robust Li–S batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.