Abstract

Two-dimensional (2D)-layered atomic arrangement with ultralow lattice thermal conductivity and ultrahigh figure of merit in single-crystalline SnSe drew significant attention among all thermoelectric materials. However, the processing of polycrystalline SnSe with equivalent thermoelectric performance as single-crystal SnSe will have great technological significance. Herein, we demonstrate a high zT of 2.4 at 800 K through the optimization of intrinsic defects in polycrystalline SnSe via controlled alpha irradiation. Through a detailed theoretical calculation of defect formation energies and lattice dynamic phonon dispersion studies, we demonstrate that the presence of intrinsically charged Sn vacancies can enhance the power factor and distort the lattice thermal conductivity by phonon-defect scattering. Supporting our theoretical calculations, the experimental enhancement in the electrical conductivity leads to a massive power factor of 0.9 mW/mK2 and an ultralow lattice thermal conductivity of 0.22 W/mK through the vacancy-phonon scattering effect on polycrystalline SnSe. The strategy of intrinsic defect engineering of polycrystalline thermoelectric materials can increase the practical implementation of low-cost and high-performance thermoelectric generators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.