Abstract

AbstractMetal–organic frameworks (MOFs) have been increasingly applied in oxygen evolution reaction (OER), and the surface of MOFs usually undergoes structural transformation to form metal oxyhydroxides to serve as catalytically active sites. However, the controllable regulation of the reconstruction process of MOFs remains as a great challenge. Here we report a defect engineering strategy to facilitate the structural transformation of MOFs to metal oxyhydroxides during OER with enhanced activity. Defective MOFs (denoted as NiFc′xFc1‐x) with abundant unsaturated metal sites are constructed by mixing ligands of 1,1′‐ferrocene dicarboxylic acid (Fc′) and defective ferrocene carboxylic acid (Fc). NiFc′xFc1‐x series are more prone to be transformed to metal oxyhydroxides compared with the non‐defective MOFs (NiFc′). Moreover, the as‐formed metal oxyhydroxides derived from defective MOFs contain more oxygen vacancies. NiFc′Fc grown on nickel foam exhibits excellent OER catalytic activity with an overpotential of 213 mV at the current density of 100 mA cm−2, superior to that of undefective NiFc′. Experimental results and theoretical calculations suggest that the abundant oxygen vacancies in the derived metal oxyhydroxides facilitate the adsorption of oxygen‐containing intermediates on active centers, thus significantly improving the OER activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.