Abstract

Many structural imperfections form in silicon crystals during their Czochralski growth. The distribution of these microdefects can be strongly influenced and controlled by the addition of impurities such as nitrogen to the crystal. A model describing the Czochralski defect dynamics in the presence of nitrogen and oxygen is proposed and solved. The reactions between vacancies and self-interstitials, nitrogen monomers and dimers, nitrogen and vacancies, and the reactions involving vacancies, oxygen, and complexes of vacancies and oxygen are incorporated, along with the formation of various microdefects-the agglomerates of vacancies, self- interstitials, and of oxygen (silicon dioxide). All microdefects are approximated as spherical clusters. The formation of all clusters is described by the classical nucleation theory. The clusters, once formed, grow by a diffusion-limited kinetics. The microdefect distributions in Czochralski crystals growing under steady state as well as unsteady state are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.