Abstract

In this paper, a new detection method of pin defects based on image segmentation and ResNe-50 is proposed, which realizes the defect detection of faulty pins in many aviation connectors. In this paper, a new dataset image segmentation method is used to segment many aviation connectors in a single image to generate a dataset, which reduces the tedious work of manually labeling the dataset. In the defect detection model, based on ResNet-50, a ResNet-B residual structure is introduced to reduce the loss of features during information extraction; a continuously differentiable CELU is used as the activation function to reduce the neuron death problem of ReLU; a new deformable convolution network (DCN v2) is introduced as the convolution kernel structure of the model to improve the recognition of aviation connectors with prominent geometric deformation pin recognition. The improved model achieved 97.2% and 94.4% accuracy for skewed and missing pins, respectively, in the experiments. The detection accuracy improved by 1.91% to 96.62% compared to the conventional ResNet-50. Compared with the traditional model, the improved model has better generalization ability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.