Abstract
Surface defect detection of micro-electromechanical system (MEMS) acoustic thin film plays a crucial role in MEMS device inspection and quality control. The performances of deep learning object detection models are significantly affected by the number of samples in the training dataset. However, it is difficult to collect enough defect samples during production. In this paper, an improved YOLOv5 model was used to detect MEMS defects in real time. Mosaic and one more prediction head were added into the YOLOv5 baseline model to improve the feature extraction capability. Moreover, Wasserstein divergence for generative adversarial networks with deep convolutional structure (WGAN-DIV-DC) was proposed to expand the number of defect samples and to make the training samples more diverse, which improved the detection accuracy of the YOLOv5 model. The optimal detection model achieved 0.901 mAP, 0.856 F1 score, and a real-time speed of 75.1 FPS. As compared with the baseline model trained using a non-augmented dataset, the mAP and F1 score of the optimal detection model increased by 8.16% and 6.73%, respectively. This defect detection model would provide significant convenience during MEMS production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.