Abstract

We consider the numerical solution of systems of nonlinear two point boundary value problems by Galerkin's method. An initial solution is computed with piecewise linear approximating functions and this is then improved by using higher-order piecewise polynomials to compute defect corrections. This technique, including numerical integration, is justified by typical Galerkin arguments and properties of piecewise polynomials rather than the traditional asymptotic error expansions of finite difference methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.