Abstract

The estimation of the parameters of defects from eddy current nondestructive testing data is an important tool to evaluate the structural integrity of critical metallic parts. In recent years, several works have reported the use of artificial neural networks (ANNs) to deal with the complex relation between the testing data and the defect properties. To extract relevant features used by the ANN, principal component analysis, wavelet decomposition, and the discrete Fourier transform have been proposed. In this paper, a method to estimate dimensional parameters from eddy current testing data is reported. Feature extraction is based on the modeling of the testing data by a template of additive Gaussian functions and nonlinear regressions to estimate their parameters. An ANN was trained using features extracted from a synthetic data set obtained with finite-element modeling of the eddy current probe. The proposed method was applied to both simulated and measured data, providing good estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.