Abstract

Defects in highly ordered self-assembled block copolymers represent an important roadblock toward the adoption of these materials in a wide range of applications. This work examines the pathways for annihilation of defects in symmetric diblock copolymers in the context of directed assembly using patterned substrates. Past theoretical and computational studies of such systems have predicted minimum free energy pathways that are characteristic of an activated process. However, they have been limited to adjacent dislocations with opposite Burgers vectors. By relying on a combination of advanced sampling techniques and particle-based simulations, this work considers the long-range interaction between dislocation pairs, both on homogeneous and nanopatterned substrates. As illustrated here, these interactions are central to understanding the defect structures that are most commonly found in applications and in experimental studies of directed self-assembly. More specifically, it is shown that, for dislocation dipoles separated by several lamellae, multiple consecutive free energy barriers lead to effective kinetic barriers that are an order of magnitude larger than those originally reported in the literature for tightly bound dislocation pairs. It is also shown that annihilation pathways depend strongly on both the separation between dislocations and their relative position with respect to the substrate guiding stripes used to direct the assembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call