Abstract
Liquid crystals inevitably possess topological defect excitations generated through boundary conditions, through applied fields, or in quenches to the ordered phase. In equilibrium, pairs of defects coarsen and annihilate as the uniform ground state is approached. Here we show that defects in active liquid crystals exhibit profoundly different behavior, depending on the degree of activity and its contractile or extensile character. While contractile systems enhance the annihilation dynamics of passive systems, extensile systems act to drive defects apart so that they swarm around in the manner of topologically well-characterized self-propelled particles. We develop a simple analytical model for the defect dynamics which reproduces the key features of both the numerical solutions and recent experiments on microtubule-kinesin assemblies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.