Abstract

► Defect annealing processes were applied to polycrystalline silicon thin films. ► Conventional rapid thermal annealing was compared to novel annealing processes using a laser system and a zone-melting recrystallization setup. ► The open circuit voltages could be enhanced from below 170 mV up to 482 mV. ► Increase in Sun's- V OC values with decrease in FWHM of the TO Raman phonon of crystalline silicon. ► Solar cells were fabricated for I – V -measurements: Best solar cell efficiency of 6.7%. A variety of defect healing methods was analyzed for optimization of polycrystalline silicon (poly-Si) thin-film solar cells on glass. The films were fabricated by solid phase crystallization of amorphous silicon deposited either by plasma enhanced chemical vapor deposition (PECVD) or by electron-beam evaporation (EBE). Three different rapid thermal processing (RTP) set-ups were compared: A conventional rapid thermal annealing oven, a dual wavelength laser annealing system and a movable two sided halogen lamp oven. The two latter processes utilize focused energy input for reducing the thermal load introduced into the glass substrates and thus lead to less deformation and impurity diffusion. Analysis of the structural and electrical properties of the poly-Si thin films was performed by Suns- V OC measurements and Raman spectroscopy. 1 cm 2 cells were prepared for a selection of samples and characterized by I – V -measurements. The poly-Si material quality could be extremely enhanced, resulting in increase of the open circuit voltages from about 100 mV (EBE) and 170 mV (PECVD) in the untreated case up to 480 mV after processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call