Abstract

The onset of plastic deformation was investigated using nanoindentation in single crystals of the explosive cyclotrimethylene trinitramine (RDX). Cleavage and habit planes were tested revealing a range of yielding behaviors. Smooth habit planes of unprocessed single crystals exhibited distinct yield points near the theoretical shear strength; planes produced by cleavage yielded at lower applied stresses. Cumulative probability distributions of maximum shear stresses at yield were used to illustrate the representative yielding behavior for samples prepared by the different methods. A statistically significant difference was observed for cleavage and habit planes. This suggested that structural defects, such as dislocations from growth and sample preparation, were being probed and nanoindentation can be used to correlate the mechanical response of organic molecular crystals with defect density. This capability may help explain the observed range of measurement differences in fundamental properties in this class of materials, such as sensitivity to the initiation of detonation in explosives, and disparate tablet integrity and stability responses in polymorphs of some pharmaceutical materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.