Abstract

Controlling defects and interfaces in composite absorbers can effectively regulate electromagnetic (EM) parameters and enhance the electromagnetic wave (EMW) absorption ability, but the mechanism still needs to be further elucidated. In this study, ZnFe2O4/ZnO/C composite was synthesized via the hydrothermal method followed by post-annealing in different atmospheres. Defects and interfaces were characterized by Raman, PL spectroscopy, XPS and TEM, and their relationship with dielectric loss and EMW absorption performance was discussed in detail. Results show that the N2-annealed ZnFe2O4/ZnO/C composite with abundant defects and interfaces as well as an optimized composition exhibits excellent EMW dissipation ability, with a RLmin value of −17.4 dB and an fe of 3.85 GHz at a thickness of 2.28 mm. The excellent EMW absorption performance originates from suitable impedance matching, significant conduction loss and strong dielectric loss (interfacial polarization, diploe polarization and defect polarization) dominated by lattice defects and interfaces. This study provides a view into the relationship between defects, interfaces, EM parameters and EMW absorption ability, and also suggests an effective way to promote EMW dissipation ability of the absorbers by controlling defects and interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.