Abstract

The homogeneous structure of field programmable gate arrays (FPGAs) suggests that the defect tolerance can be achieved by shifting the configuration data inside the FPGA. This paper proposes a new approach for tolerating the defects in FPGA's configurable logic blocks (CLBs). The defects affecting the FPGA's interconnection resources can also be tolerated with a high probability. This method is suited for the makers, since the yield of the chip is considerably improved, specially for large sizes. On the other hand, defect-free chips can be used as either maximum size, ordinary array chips or fault tolerant chips. In the fault tolerant chips, the users will be able to achieve directly the fault tolerance by only shifting the design data automatically, without changing the physical design of the running application, without loading other configurations data from the off-chip FPGA, and without the intervention of the company. For tolerating defective resources, the use of spare CLBs is required. In this paper, two possibilities for distributing the spare resources (king-shifting and horse-allocation) are introduced and compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.