Abstract
Metal halide perovskites (MHPs) constitute a rich library of materials with huge potential for disruptive optoelectronic technologies. Their main strength comes from the possibility of easily tuning their bandgap to integrate them in devices with different functionalities — in principle. In reality, this cannot be achieved yet. In fact, whereas defect tolerance can be claimed for MHPs with a bandgap of about 1.6 eV, the model system that is the object of intense investigations, MHPs with lower and higher bandgaps are far from being defect-tolerant. These materials show various forms of instabilities that are mainly driven by strong defect activity. Here we critically assess the most recent advances in elucidating the physical and chemical activity of defects in both high-bandgap and low-bandgap MHPs, while correlating it to performance and stability losses, especially for solar cells, the driving application for these materials. We also provide an overview of the strategies so far implemented to eventually overcome the remaining materials-based and device-based challenges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.