Abstract
Whenever web-application executes dynamic SQL statements it may come under SQL injection attack. To evaluate the existing practices of its detection, we consider two different security scenarios for the web-application authentication that generates dynamic SQL query with the user input data. Accordingly, we generate two different datasets by considering all possible vulnerabilities in the run-time queries. We present proposed approach based on edit-distance to classify a dynamic SQL query as normal or malicious using web-profile prepared with the dynamic SQL queries during training phase. We evaluate the dataset using proposed approach and some well-known supervised classification approaches. Our proposed method is found more effective in detecting SQL injection attack under both the scenarios of authentication security.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.