Abstract

In this work we study a rational extension $SROEL^R T$ of the low complexity description logic SROEL, which underlies the OWL EL ontology language. The extension involves a typicality operator T, whose semantics is based on Lehmann and Magidor's ranked models and allows for the definition of defeasible inclusions. We consider both rational entailment and minimal entailment. We show that deciding instance checking under minimal entailment is in general $\Pi^P_2$-hard, while, under rational entailment, instance checking can be computed in polynomial time. We develop a Datalog calculus for instance checking under rational entailment and exploit it, with stratified negation, for computing the rational closure of simple KBs in polynomial time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.