Abstract

Feedforward neural networks are a popular tool for classification, offering a method for fully flexible modeling. This paper looks at the underlying probability model, so as to understand statistically what is going on in order to facilitate an intelligent choice of prior for a fully Bayesian analysis. The parameters turn out to be difficult or impossible to interpret, and yet a coherent prior requires a quantification of this inherent uncertainty. Several approaches are discussed, including flat priors, Jeffreys priors and reference priors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.