Abstract

Fall is recognized as one of the most frequent accidents among elderly people. Many solutions, either wearable or noncontact, have been proposed for fall detection (FD) recently. Among them, WiFi-based noncontact approaches are gaining popularity due to the ubiquity and noninvasiveness. The existing works, however, usually rely on labor-intensive and time-consuming training before it can achieve a reasonable performance. In addition, the trained models often contain environment-specific information and, thus, cannot be generalized well for new environments. In this article, we propose DeFall, a WiFi-based passive FD system that is independent of the environment and free of prior training in new environments. Unlike previous works, our key insight is to probe the physiological features inherently associated with human falls, i.e., the distinctive patterns of speed and acceleration during a fall. DeFall consists of an offline template-generating stage and an online decision-making stage, both taking the speed estimates as input. In the offline stage, augmented dynamic time-warping (DTW) algorithms are performed to generate a representative template of the speed and acceleration patterns for a typical human fall. In the online phase, we compare the patterns of the real-time speed/acceleration estimates against the template to detect falls. To evaluate the performance of DeFall, we built a prototype using commercial WiFi devices and conducted experiments under different settings. The results demonstrate that DeFall achieves a detection rate above 95% with a false alarm rate lower than 1.50% under both line-of-sight (LOS) and non-LOS (NLOS) scenarios with one single pair of transceivers. Extensive comparison study verifies that DeFall can be generalized well to new environments without any new training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.